57 research outputs found

    Noncollinear magnetic order in quasicrystals

    Get PDF
    Based on Monte-Carlo simulations, the stable magnetization configurations of an antiferromagnet on a quasiperiodic tiling are derived theoretically. The exchange coupling is assumed to decrease exponentially with the distance between magnetic moments. It is demonstrated that the superposition of geometric frustration with the quasiperiodic ordering leads to a three-dimensional noncollinear antiferromagnetic spin structure. The structure can be divided into several ordered interpenetrating magnetic supertilings of different energy and characteristic wave vector. The number and the symmetry of subtilings depend on the quasiperiodic ordering of atoms.Comment: RevTeX, 4 pages, 5 low-resolution color figures (due to size restrictions); to appear in Physical Review Letter

    Spin-spin correlations in ferromagnetic nanosystems

    Full text link
    Using exact diagonalization, Monte-Carlo, and mean-field techniques, characteristic temperature scales for ferromagnetic order are discussed for the Ising and the classical anisotropic Heisenberg model on finite lattices in one and two dimensions. The interplay between nearest-neighbor exchange, anisotropy and the presence of surfaces leads, as a function of temperature, to a complex behavior of the distance-dependent spin-spin correlation function, which is very different from what is commonly expected. A finite experimental observation time is considered in addition, which is simulated within the Monte-Carlo approach by an incomplete statistical average. We find strong surface effects for small nanoparticles, which cannot be explained within a simple Landau or mean-field concept and which give rise to characteristic trends of the spin-correlation function in different temperature regimes. Unambiguous definitions of crossover temperatures for finite systems and an effective method to estimate the critical temperature of corresponding infinite systems are given.Comment: 7 pages, 5 figures, EPJB (in press

    Magnetic properties of single atoms of Fe and Co on Ir(111) and Pt(111)

    Full text link
    In using the fully relativistic versions of the Embedded Cluster and Screened Korringa-Kohn-Rostoker methods for semi-infinite systems the magnetic properties of single adatoms of Fe and Co on Ir(111) and Pt(111) are studied. It is found that for Pt(111) Fe and Co adatoms are strongly perpendicularly oriented, while on Ir(111) the orientation of the magnetization is only out-of-plane for a Co adatom, for an Fe adatom it is in-plane. For comparison also the so-called band energy parts of the anisotropy energy of a single layer of Fe and Co on these two substrates are shown. The obtained results are compared to recent experimental studies using e.g. the spin-polarized STM technique

    Observation of a Complex Nanoscale Magnetic Structure in a Hexagonal Fe Monolayer

    Get PDF
    We have observed a novel magnetic structure in the pseudomorphic Fe monolayer on Ir(111). Using spin-polarized scanning tunneling microscopy we find a nanometer-sized two-dimensional magnetic unit cell. A collinear magnetic structure is proposed consisting of 15 Fe atoms per unit cell with 7 magnetic moments pointing in one and 8 moments in the opposite direction. First-principles calculations verify that such an unusual magnetic state is indeed lower in energy than all solutions of the classical Heisenberg model. We demonstrate that the complex magnetic structure is induced by the strong Fe-Ir hybridization
    corecore